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An analysis of laminar film condensation on a vertical fluted tube has been made 
considering gravitational and surface tension effects over the entire fluted surface, and 
using surface-oriented coordinates. For the first time surface tension effects are determined, 
as they should be, from the shape of the condensate-vapor interface rather than from the 
shape of the flute. Two-dimensional conduction within the condensate film as well as in the 
fluted tube wall is considered. A finite difference solution of the highly nonlinear partial 
differential equation for the film thickness is coupled with a finite element solution of the 
conduction problem. The procedure has been tested on a sinusoidal flute with amplitude- 
to-pitch ratio ~0.2. A linear extrapolation on a log-log basis of the results shows good 
agreement with experiment data. 
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Introduction 

Many methods 1 for enhancing condensation heat transfer have 
been proposed. Among them, Gregorig 2 first recognized the 
importance of surface tension in film condensation on vertical 
fluted tubes such as the one shown in Figure 1. Thereafter, many 
experimental studies 3-9 on vertical fluted surfaces were made to 
confirm his findings. They all found about four to eight times 
larger heat transfer coefficients than those on a vertical smooth 
tube. Gregorig's theoretical model has also been improved 
upon, but much still remains to be done. Edwards e t  al .  1° 

proposed a condensation model on a heat transfer surface of 
triangular fins with the assumption that the liquid film was 
attached to the tip of the fin with a finite contact angle. The effect 
of a locally thin condensate film on the side of the fin was not 
considered by them, nor by Fujii and Honda H. Mori e t  al .  12 

considered the effect of a thin condensate film on the side of the 
fin but neglected the variation of its thickness in the vertical 
direction. Hirasawa e t  al .  ~ 3 improved upon Ref. 12 in that they 
included the variation of a thin condensate film in the vertical 
direction, but they completely neglected conduction within the 
fin and the film. Panchal and BellX 4,~ s also neglected conduction 
within the fin and the film while analyzing a sinusoidal fluted 
tube, but later found that two-dimensional conduction is 
important within the fin and the film for a triangular fin 16. A 
recent analysis by Barnes and Rohsenow 17, based largely on 
Refs. 14 and 18, reports an augmentation ratio of about 15 for 
condensation of steam on a fluted surface, whereas most earlier 
studies considered condensation of a refrigerant and found much 
smaller augmentation ratios. With our present knowledge, 
it is difficult to ascertain whether this discrepancy is due to 
different fluids or to questionable analysis. 

All theoretical analyses discussed above break up the fluted 
surface into basically two parts. In the portion near the crest, 
gravity is neglected in comparison to the surface tension effect, 
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whereas in the portion near the trough, the reverse is true. The 
two regions are patched at a point that is selected quite 
arbitrarily at times 13-16. This isolation of the two important 
effects is justified on the basis that the condensate film is thick in 
the trough region and thin over the crest. This, however, is not 
true over the initial portion of the tube length. 

A recent analysis by Stack and Merkle 19 does attempt to 
solve the complete equation with both gravitational and surface 
tension effects included over the entire flute, but it has two major 
drawbacks. First, their analysis is restricted to impracticably 
low values (0.02 and 0.04) of amplitude-to-pitch ratio of the 
flute, owing to the use of a cartesian coordinate system rather 
than a surface-oriented coordinate system. Second, their 
analysis does not consider any heat transfer effects. Fujii and 

Figure 1 Vertical fluted tube 
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Honda t i also considered the entire thin film as one piece over an 
initial length of the tube (only about one-eighth of the flute 
pitch), but neglected the important surface tension effect. 

A major deficiency of all the above theoretical analyses is the 
way the surface tension effect is determined. This effect depends 
not upon the curvature of the condensate-vapor interface but 
upon the variation of this curvature along the interface. 
However, since the location of this interface is unknown a priori, 
some analyses x°'~ simply determine it on the basis of the 
known flute shape. Such analyses cannot be applied at all to 
triangular or rectangular fins because their curvature, as well as 
the variation of curvature along the flute, is zero. This is not 
true, however, for the condensate-vapor interface. Even for 
sinusoidal flutes, there are large differences between the 
curvature and its variation along the curved surface for the given 

flute and the actual interface, as we show later. Moreover, the 
claims that these analyses determine the surface tension effect 
based on the shape of the condensate-vapor interface are 
questionable, as we show in the Appendix. 

Another problem with all earlier theoretical analyses except 
Ref. 11 is that conduction within the condensate film and the 
tube wall is either completely neglected or considered to be at 
most one-dimensional. Panchal and Bell16 point out clearly that 
two-dimensional conduction should be considered within the 
condensate film and the tube wall. 

The analysis in this paper attempts to remove these 
deficiencies and presents a finite difference solution of the highly 
nonlinear partial differential equation for the condensate film 
thickness coupled with a finite element solution of the two- 
dimensional conduction problem. 

Notation 

A,B,C 

D1,D2 
D3 
E1,Ea 

F 

f(x) 
f ~(x) 

G 
g 
hfg 
ho 
ht 
k 
kf 
kw 

n w 
P 
P 
Ps 
(2 

R 

R c 
Ri 

R. 

ri 

rw 
S1,Sa 

T 

Coefficients of Equation 19 as defined in 
Equations 20 
Coefficients in Equation 15 
The ratio 6,/xp 
Dimensionless shear stresses, defined following 
Equations 16 
Dimensionless derivative of radius of curvature 
of the condensate-vapor interface 
Function describing the flute shape 
Function describing the condensate-vapor 
interface 
The ratio Q/A 
Acceleration due to gravity 
Latent heat of vaporization 
Half-amplitude of the flute (Figure 2) 
Mean height of the flute (Figure 2) 
Thermal conductivity 
Thermal conductivity of the fluid 
Thermal conductivity of the fluted tube 
material 
Length of the fluted tube in the vertical 
direction 
Unit normal to the flute 
Pitch of the flute 
Pressure 
Saturation pressure of the vapor 
Dimensionless function of the radius of 
curvature of the flute, defined following 
Equations 16 
Radius of curvature of the fluted tube; also, 
right side of Equation 19 as defined in 
Equations 20 
The ratio R/xp 
Radius of curvature of the condensate-vapor 
interface; also, as defined in Equation 20d 
The ratio RJxv; also as defined in Equation 
20h 
Position vector to a point on the condensate- 
vapor interface 
Position vector to a point on the flute surface 
Shear stresses in xl- and z-directions, 
respectively 
Temperature 

T~ 
Ts 

T. 
7"wo o 
U 1, U2~ W 

X 
X1, X2 

Xi 

Xp 

x, y 
Z, z 

Zo, 2" 0 

0t I to 0t 4 

~1 to/~4 
y~ to ys 
A, 6 

60 

6X, 6Z 

£ 

ju 
P 
p,, 
O" 

Temperature at the coolant-tube interface 
Saturation temperature at the condensate- 
vapor interface 
Wall temperature 
Wall temperature at the initial station z o 
Velocity components in xt-, x2-, and z- 
directions, respectively 
Dimensionless distance along the flute 
Coordinates along and normal to the flute, 
respectively 
Coordinate along the condensate-vapor 
interface 
Length of curve DE along the flute (Figure 2) 
Coordinates as shown in Figure 2 
Dimensionless and dimensional vertical 
coordinates, respectively 
Dimensionless and dimensional locations of 
initial station in vertical direction, respectively 
Coefficients in Equation A4 
Parameter depending upon the finite 
differencing used (Equation 17) 
Coefficients in Equation A4 
Coefficients in Equation A6 
Dimensionless and dimensional condensate film 
thicknesses, respectively 
Condensate film thickness at the initial station 
Zo 
Characteristic film thickness based upon the 
Nusselt relation 
Step sizes in the X- and Z-directions, 
respectively 
Small number for termination of iterations 
Relaxation factor 
Dynamic viscosity of the condensate 
Density of the condensate 
Density of the vapor 
Surface tension 

Subscripts 
i,k Represent locations in X- and Z-directions, 

respectively 

Superscripts 
m Value at the current iteration 
' Derivative with respect to x or x~ 
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Figure 2 Coordinate system 

A n a l y s i s  

Consider the condensate as a viscous, incompressible 
Newtonian fluid, and set up a curvilinear orthogonal coordinate 
system (xl,x2, z) as shown in Figure 2. The momentum 
equations (Ref. 20, p. 68), simplified with the assumptions that 
inertia terms are negligible compared to other terms, and that 
63/0x2 ~> O/Oxt or O/Oz, and u2 ,~u~ or w, then yield 

O 2ut 1 R 63p 

Ox~ =# R + x 20x I (1) 

63p 
- - = 0  (2) 
Ox 2 

63Zw g 
(P -Pv)  (3) 63x~ 

where ut, u2, and w are the velocity components in the xl-,  x2-, 
and z-directions, respectively, R(x~) is the radius of curvature of 
the fluted tube, p is the pressure in the condensate film, 9 is the 
acceleration due to gravity, p and # are the density and dynamic 
viscosity of the condensate, and p~ is the density of the vapor. 

Integration of Equation 1 with boundary conditions 

ux=0  at x2=0  

Ou t 
# ~x2 =$1 at x2=6 (4) 

yields 

St . R dp ~ . { R + x 2 \  _ .  [R+x2"~ ] 
. , = -  x, . ;   tx.  :,nt y ) -  (5) 

Here St is the (known) shear stress in the xt-direction on the 
condensate-vapor interface, and 8(xt, z) is the condensate film 
thickness. Similarly, integration of Equation 3 with boundary 
conditions 

w = 0 at x2 = 0 (6) 

Ow 
/.1 ~X2 = S 3 at x2=8  

yields 

w = - - x  2+ (P--p~)x2 8 -  (7) /l 

Here S3 is the (known) shear stress in the z-direction on the 
condensate-vapor interface. 

Considering a control volume that extends over the 
condensate film thickness, we can write the continuity equation 
in integral form as 

63 fo 63 re; kf /63T\ w dx2 = - -  l - - /  (8) 
t3x 1 ul dx2 +Ozz phfg \dx2Jx ~ =,~ 

where kf is the thermal conductivity of the fluid, and hfg is the 
latent heat of vaporization. The right side of Equation 8 
represents the rate of condensation of vapor. 

Substituting for ut and w from Equations 5 and 7 into 
Equation 8 and integrating, we get 

S t d6 2 6 2 63S 1 
t 

2/~ 63x t 2/~ dx 1 

1 d [ R  dp R6 38 2 R 2 8 

dxx 

S 3 638 2 8 2 63S 3 g . ,6383 kf T s -  Tw 
- I - ~ - z  q - ~ - z  - I - ~ [ ' ° - P v /  63z =phfg 8 (9) 

where T s is the saturation temperature at which condensation 
takes place and Tw(xt, z) is the wall temperature at x2 =0.  The 
pressure p can be related to the surface tension a and radius of 
curvature R i of the condensate-vapor interface by 

p=ps +_tr/Ri (10) 

where Ps is the saturation pressure of the vapor. The positive 
sign holds for O<~xx<xp/2, and the negative sign for 
Xp/2 <<. xt <~ xp, where xp is the length of curve DE in Figure 2. We 
are basically interested in analyzing flute shapes that are 
symmetric about the crest and trough, so we consider only half 
of the flute pitch. 

If we assume a to be constant, Equation 10 yields 

dp = + (11) a d ( 1 ' ~  

dx, - ~-x~\Ri)  

It is thus the variation of curvature of the condensate-vapor 
interface, not the curvature itself, that is significant. In general, 
this can be quite different from d(1/R)/dx t, a fact neglected by 
many previous analyses. Relations for finding d(1/Ri)/dxt are 
given in the Appendix. 

Equation 9 is a partial differential equation for the condensate 
film thickness 8(xt, z). It requires prior knowledge of shear 
stresses St and Sa that come from vapor dynamics, and of 
Tw(xt, z) that comes from the heat transfer analysis of the fluted 
tube and condensate film. This equation involves only first- 
order derivatives with respect to z but fourth-order derivatives 
with respect to xt, owing to the presence ofdp/dxt (cf. Equations 
1 1 and A5). For flute shapes that are symmetric about the crest 
and trough, the boundary conditions for the solution of 
Equation 9 are 

638 6338 
63x~=63x~=0 at x 1 = 0  and at xl =Xp for all z (12a) 

6(xl, 0 )=0  (12b) 

The initial condition at z = 0 is correct, but it is not practical 
to start the integration of Equation 9 from z = 0. Therefore, 
following Stack and Merklet 9, we replace the initial condition at 
z = 0  (Equation 12b) by 

6(x 1, Zo)= 6 0 (12c) 

where 80, the film thickness at the initial station Zo, is determined 
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by the classical Nusselt solution 

f _~4l~kfzo(T'-Twoo)~ 1/4 
o - -  t ~ - ~  _ pv~hfg  j- (13) 

Here T,  oo = Tw(0, z0)~ T~(0, 0). 
For  nondimensionalization, we take the length L of the 

vertical fluted tube in the z-direction, and the lengths xp and fr 
as the characteristic lengths in the x l -  and xz-directions, 
respectively. Here Jr is related to L by the Nusselt relation 
(equation 13) in exactly the same manner as fo is related to Zo. 
Thus, we let 

A = f / f r ,  X = x l / x p ,  Z = z / L  (14) 

With this nondimensionalization, Equation 9 and the boundary 
conditions expressed by Equations 12a and 12c can be written as 

6~A 3 63Q cfA 2 _ ~A 2 _2/'c3E1 OE3\ 3D 2 
+o1 !,,Tf+-ff)=-TT (15) 

dA 83A 
= 0  at X=O, 1 for all Z (16a) 

d X  (~X 3 

A(X, Zo) = Z~/4 (16b) 

where 

= 3 o ' L  D 2  = - - T  s - T w 
Zo=L,Z° D1 a(p_pv)xpfar' T s -  T.oo 

3LSI 3Sa 

Et = 2xJ(p- pv)Xpfr' Ea = 2ff(p - pv)fr 

RcA 3D3 A2 Rc 2 DfA 

f~ R 
Da = - - ,  R~ = - -  

Xp Xp 

- d x  \R,,./ ~x i  Rii 

( -  for 0~<X<l /2 ;  + for l / 2<X~<l )  

Ri 
R n ~ - -  

Xp 

Equation 15 is a highly nonlinear partial differential equation. 
It is solved numerically by the finite difference technique as 
detailed below. 

Finite difference method 

Equation 15 is parabolic in Z so that a forward marching 
scheme in the Z-direction can be used. Thus the choice o f f  o will 
affect only the region near Zo, and its effect will die out as z 
increases. This was indeed found to be true. Equation 15 as 
written is in conservative form. An equivalent, but non- 
conservative, form can be obtained by expanding the derivatives 
in Equation 15 and dividing by 3A z. In that nonconservative 
form, the equation is still parabolic in Z, but the mass is 
not identically conserved when the equation is integrated 
numerically 19. 

We divide the interval 0~< X ~< 1 into n equal parts. Taking fiX 
and f Z  as the step sizes in the X- and Z-directions, respectively, 
and using backward differencing in the Z-direction and mixed 
differencing in the X-direction, we can write the finite difference 

form of Equation 15 as 
3 3 A,.k-A,.~-I flQi+ l.k +(1-2fl)Qi.k-(l-fl)Ql-l .k 

+Di 
fZ  fix 

+E 1 flA~2+l.,+( 1-2f l )A~,k-(1-f l )a~ - ,  k A2 ^2 
3X ' ~" Ea l.k - ' - ' l ,k-  1 

fZ  

2 {dEt t~Ea\ 3D2 

+ A i , k t " ~ - + - - ~ ) i , k = 4 A i , k  
(17) 

where the subscripts i and k represent the locations in the X- and 
Z-directions, respectively, and fl is a parameter between 0 and 1. 
fl = 0 corresponds to backward differencing, fl = 1 to forward 
differencing, and fl=½ to central differencing in X. Since 
Equation 16b gives A's for all X (i.e., for all i= 0(1)n) at Z o (say 
k = 1 ) ,  we can march forward in the Z-direction. 

Equation 17 leads to a tridiagonal set of nonlinear algebraic 
equations to be solved for n + 1 values of A's at each location k of 
forward march in the Z-direction. This nonlinear set is solved by 
linearization and successive iteration. Three methods were used 
for linearization, and their details are presented in Ref. 21. Of 
these, the one that worked best uses a Taylor series expansion to 
linearize terms containing A 2 and A 3. Thus we let 

(A~k)" = 3(A~k)"- ' (A,.kr - 2(Afk)"- ~ (18a) 

and 

(A2k)m = 2(A/,k)ra- t (Ai,k). _ (A~k)m-,  (18b) 

where ( )" and ( ) ' -  t represent the values at the (current) ruth 
and (previous) (m-1) th  iteration, respectively. With this 
linearization, Equation 17 can be written as 

Ai(Ai-  i,k) m + Bi(Ai,k) ra + Ci(AI+ i,k) = = Ri (19) 

where the coefficients are 

f Z  
A i = --  ~ -~  (1 --  f l ) [D 1 (G i_ l,k) m - l + 2E1 (Ai_ l,k) m - 1], 

i=1,2 . . . . .  n - 1  (20a) 

{OEI ~Ef"~ -] 
B,=(A,.k)mI i [3(Ai .k)m-l+ 2E3 + + 

fZ  
+ ~-~ (1 - 2fl)[D, (G,.k)"- ' + 2E, (A,.k)'- ' ] ,  

i =  0, 1 . . . . .  n (20b) 

f Z  ,, i 2 C,=-~-.U,~[Di(G,+ I.~) - + Ei(Ai+L~) ' - '  ], 

i=1,2 . . . . .  n - 1  (20c) 

3D2fZ 
R, = A~k _, + EaA~.k -1 ~ 4(A,.k ) .  - ,  + 2(A,3.k )" - '  

fZ  2 =- i 
-- (1 --fl)(Al- 1,~)" ] + g  l ~ _  r . f l (Ai+ 1,k ) + (1 _ 2 f l ) (a2k )m-  1 2 -1  

+ l E a  + /~EI  SEa\ -] 2 = i - .  
L 

i - -1 ,2  . . . . .  n - I  (20d) 

f Z  
A.= -~-x  [Dt(G._t,k)"-l + 2El(1-2fl)(A._t.k) " - t]  (20¢) 

3 Z - D  . = 
C o = T ~  L t(G, ~) - t - 2 E d l - 2 # ) ( A t  ~ )" - ' ]  (20f) 
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Ro -A3- o,k-i +EaA2,k- 1 -~ 4(Ao,k) "-13D26Z E I ~  -(16Z --2fl)(Al,k)2 m-1 

2 m - l r  m-1 t~Z + (Ao.k) 2(Ao.k) + E l  ~ (1 -- 2fl)+E 3 
L 

/'t~E1 t3Es\ q 

R , -  3 2 3026Z f Z  (1 - 2fl)(A 2 1 k ) ' - I  
--An'k-I +E3An'k-1 -{" 4(An.k)"-I EI 6X - ' 

F 6Z (1 + L2(a., r-1 + E, - 2fl) + E s 

//~E 1 t3E 3" ~ q 

and where G = Q/A and the boundary conditions in Equation 
16a have been accounted for. 

For  successive iterations to converge, it is also necessary to 
underrelax the values of A after every iteration according to the 
FORTRAN statement 

( a ) ' =  (A) ' -  ' + ,~[(A)"-  ( a ) ' -  1] (21) 

where the relaxation factor 2 < 1. 
Note from Equations 20 that the Taylor series expansion was 

not used to linearize the right side of Equation 17 or the terms 
involving Q on the left side of Equation 17. Although such a 
linearization of the right side of Equation 17 was not found to be 
beneficial, that of the terms involving Q in Equation 17 was 
found not to work at all. Additional details of this situation are 
given in Ref. 21. 

C o m p u t a t i o n a l  d e t a i l s  

Before the set of Equations 19 resulting from Equation 17 can be 
solved, we need to specify values of the dimensionless 
parameters El ,  E3, and D2. This requires prior knowledge of the 
shear stresses $1 and Sa and the temperature Tw(x~, z) of the 
condensate-wall interface. The computer code does have a 
provision for specifying $1 and $3, but for the present results 
both these stresses were set to zero. The computer code, 
however, does calculate Tw(xl,z ) by considering two- 
dimensional conduction within the fluted tube wall as well as 
within the condensate film. For  this, the Laplace equation 

[632T a2T'~ 0 kt +7)= 122t 
is solved subject to the boundary  condi t ions 

~T 
- -  = 0 at x = 0, [ ' /2 (231 
t3x 

where P = pitch of the flute 
T= Ts at the condensate-vapor interface 
T=  Tc at the coolant-tube interface 

and k is the thermal conductivity, and T¢ is the coolant 
temperature, which is assumed to vary linearly from the coolant 
inlet to exit temperature. 

The solution to the system 22 and 23 was obtained by a finite 
element method in which region OABCO (Figure 2) was divided 
into several linear triangular elements. Details can be found in 
any text on the finite element method, but some care is required 
since the thermal conductivity of the fluid in region ABEDA is 
vastly different from that of the tube material in region DECOD 

(Figure 2). This solution yields the values of Tw(xl, z) on the 
surface DE (Figure 2). 

It is therefore obvious that the solutions of Equations 17 
and 22 are coupled. Also, since the solution of Equation 17 is 
found iteratively, Equation 22 should also be solved at every 
iteration. This places a rather prohibitive demand on computer 
time. However, since 6Z is small (about 10-5), changes in 6 are 
small at every iteration, with the result that Equation 22 can be 
solved only once per step in the Z-direction. This saves 
considerable computer time at the cost of really negligible error 
in 6 and heat transfer values, as confirmed by some initial runs. 

Successful solution of Equation 17 requires the correct 
calculation of the highly nonlinear parameter Q, which involves 
the computation of d(I/Ri)/dxl. An equation for the evaluation 
of this derivative is given in the Appendix, and additional details 
can be found elsewhere 21. Use of Equation A5 to find this 
derivative requires the determination of the first three 
derivatives of 6 with respect to xl. Though 6 is known at 
equidistant values of xl,  numerical calculation of higher-order 
derivatives is always problematic due to amplification of noise 
in the data. Several methods were therefore tried with varying 
degrees of success 21 . Of these, the best method turned out to be 
the use of central difference relations. 

R e s u l t s  a n d  d i s c u s s i o n  

Results are presented for one vapor-tube combination for which 
experimental data is also available. Specifically, results were 
computed for tube F of Refs. 8 and 9. This tube was made of 
aluminum, was smooth on the inside, and had 48 external flutes. 
It had an internal diameter of 22.9mm and an overall 
condensing length of 1.168m. Data were available for 
condensation of several refrigerants on its outer surface 9. 
However, the particular case chosen for comparison was for 
condensation of freon-113 on the tube while it was covered with 
seven rubber condensate drainage skirts equally spaced along its 
vertical axis. These skirts were designed to strip the condensate 
away from the tube wall, thereby providing eight equally spaced 
condensation lengths of 142.875 mm each. Details of the actual 
shape of the flute and its dimensions are not available in Refs. 8 
and 9, so they were approximated from an enlarged photograph 
contained in Ref. 9. The relevant fluid and tube properties used 
in the analysis are 

p = 1498 kg/m 3 

/~=4.8 x 10 -4 kg/m-s 

hfg= 145.23 kJ/kg 

k w = 205 W/m-K 

Twoo = 318.5 K 

L = 142.875 mm 

ht =0.881 mm 

Pv = 8.586 kg/m 3 

tr = 0.0143 N/m 

kf= 0.07 W/m-K 

T s = 325.5 K 

T~= 318.5 K(in), 318.8 K(out) 

P = 1.614 mm 

ho = 0.1554 mm 

where k~ is the thermal conductivity of the fluted tube material 
and h t and h o are associated with the flute shape (Figure 2), 
taken to be 

f(x)=h,+ho cos ( - ~ )  (24) 

The amplitude-to-pitch ratio of this flute is ~ 0.2. 
After some numerical experimentation involving different 

step sizes, etc., the solution of Equation 17 was started from 
Z o = 5  x 10 -6 with fl=½, 6X=0.05, an initial 6 Z = 5 x  10 -6, 
and an initial 2=0.5.  Further iteration for the solution of 
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Equation 17 was terminated when 

II -(Ai.k)'-1/(Ai.h)"l < e for all i at every k (25) 

where ~ was taken to be 10 -6. As the solution marched 
downstream in the Z-direction, &Z was increased and the 

T a b l e  I Some parameters for solving Equation 17 

&Z ). Z No. of iterations 

5 x 1 0  -6 0.5 up to 0.002 ~ 1 5  
8x  10 -5 0.2 up to 0.01 ~ 3 0  

1.25x 10 -5  0.1 up to 0.0225 ~ 5 0  
2 x 10 -5  0.06 up to 0.086 ~ 9 0  

E 
E 

Figure 3 
locations 
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0.6 

0.4. 

0 .2  

0.0  0 .0  I 0.2 
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I I I 
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relaxation factor ~ had to be decreased according to Table 1, 
which also gives an idea of the number of iterations required 
before Equation 25 was satisfied. 

Three different divisions ofthe region OABCO (Figure 2) into 
finite elements for the solution of Equation 22 were tried. The 
one selected on the basis of adequate computational accuracy 
and relatively economical calculation had 154 triangular 
elements with 108 nodes. There were 11 nodes each on faces AB, 
BC, OC, and DE (Figure 2), and 15 nodes on face AO. 

Figure 3 shows to true scale the flute shape (solid curve) and 
the condensate film shapes (dashed curves) at Z = 0.001, 0.01, 
0.03, and 0.086. As expected, the film thickens quite rapidly in 
the trough region while remaining thin over the crest. 
Unfortunately, it was not possible to obtain any results for Z 
much greater than 0.086, because convergence of the solution 
for the film thickness (for the same tolerance ~) became very 
slow. The principal reason for this slow convergence was the 
thickening of the film in the trough. It is clear from Figure 4, 
which shows the absolute value of d(1/Ri)/dxl at various Z-  
values, that this derivative becomes negligible in the trough 
region as compared to its value in the crest region. It is therefore 
appropriate to neglect surface tension effects in the trough 
region once the condensate film has thickened. Figure 4 also 
plots the absolute value of the derivative of flute curvature 
(Z = 0) with respect to x l, and even at the low value o fZ  = 0.002 
it is very different from the derivative of the condensate-vapor- 
interface curvature. This clearly brings out the error in those 
analyses that determine the surface tension effect on the basis of 
the known flute shape. 

An extension of this work to Z>0.086,  with the above 
considerations, is underway. It is encouraging to note from 
Figure 5 that a linear extrapolation, on a log-log basis, of the 
results to date to Z = 1 compare well with the experimental data. 
Figure 5 shows the heat load (in watts) per half flute as a 
function of Z. This relationship is linear on a log-log basis. The 
solid portion of the straight line is based on the computed results 
of this analysis, and the dashed portion is the extrapolation. The 
circled point is based upon experimental data 9. As part of this 
analysis, the heat transfer rates across faces AB and OC in 
Figure 2 were compared, and agreement was within 1%. Under 
steady-state conditions, of course, they should theoretically be 
identical, since faces OA and BC are insulated. 
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Conclusions and recommendations 

Besides a critical review of the existing literature on film 
condensation on vertical fluted tubes, a successful attempt has 
been made to correctly account for both surface tension and 
gravitational effects over the entire flute shape in the initial 
portion of the tube height. This is done by use of a surface- 
oriented coordinate system so as to be able to analyze flute 
shapes with practical values of amplitude-to-pitch ratio. Two- 
dimensional conduction within the condensate film and the 
fluted tube wall is also considered. 

Besides the deficiencies mentioned above, an assumption 
common to all previous analyses, and far more serious in terms 
of correctly modeling practical applications, is the complete 
neglect of vapor shear on the interface. The present analysis does 
have the provision for studying this effect, but to date the vapor 
shear has been taken to be zero. One should also consider the 
coolant dynamics to obtain a complete solution, but all this will 
undoubtedly be very demanding. 
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Appendix: Condensate-vapor-interface 
curvature 

Let f (x)  denote the flute shape (Figure 2), and rw and r i be the 
position vectors to points on the flute and condensate-vapor 
interface, respectively. Then 

r i - - r  w = n  w& (A1) 

where nw is the unit normal to the flute, given by 

n.  = (1 + f , 2 ) - , / 2 ( _ f , ,  1) (A2) 

where f '  = df /dx .  If we let xi be the curvilinear coordinate along 
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the condensate-vapor interface, we have by definition 

1 O2r i ~2(r w + n w 6  ) t~2rw . c3211 w _ cqn w t~6 c326 

(m)  

where O/c~xi has been approximated by c~/c~x,. Noting that 
rw =(x, f) ,  and nw is given by Equation A2, we get from 
Equation A3, after some lengthy algebra, the relation 

1 
Rii "~" 1"(0~1 + ~26 + 0t36' "}- 0f46") 2 "~ (ill  +f126 nt- J~36, "Jr" fl46")2"] 1/2 

(A4) 
where 6 ' -  = ~6/~xl, etc., and 

Otl ---- -- f l l f ' ,  

eta= --2ill, 

fit =f"(1 +f,2)-2,  

fla = 2~1, 

/ 4 f ' :  "2 \ 
O~ 2 = (1 "l-f '2) - 5/2|~__f,,,| 

\~ + J  } 

~4 = - f l 4 f '  

f12 =o~2f'--fllflaf" 
fl,, = (I +f,2)- 1/5 

From Equation A4 it follows that 

dx~ 
x (/32 + ~;6 + 3~2a'- 3fl~a" + e4a') 

+ (13, + f l #  +f l# '  +~,a") 

x ( -  ~2 + flla + 3f126' + 3 ~  a" + fl4a')} 

where 
" 4  . 2  , , .  ,2  , ,a d°t2 . .+ f , 2 ) -aF f  + 1 3 f f )  ,~ 28f f ] I 

=u L i ; 7  a : 

(A5) 

and 

fl~ = ~ = ~x~f' +f"(2fl.tx 2 - 0lift I ) - -  fl t f l~f" 

Though the relation for d(1/Ri)/dx 1 in Equation A5 is 
somewhat approximate, it was preferred over the exact relation, 
since the latter yields mild oscillations in values of 6 upon 
integration of Equation 9 by a few steps in the Z-dire~'tion. 
Writing ri as 

r i = ( x  - -  6 f ' f 1 4  , f +  6fl,) 
we can show 21 that the exact relation for the curvature of the 
condensate-vapor interface is 

1 ly56" +)~4.66' -I- ~ 36 -k )~262 d- )J 1 (1 - 66" + 26'2)1 (A6) 
Ri [Y6( 1 + 6 '2 ) + ~'762 + 7s 6] 3/2 

where 71 to Ys are related 21 to derivatives of f(x) with respect to 
x, and in particular Ys =3,~/2. Many theoretical analyses that 
claim to determine the surface tension effect based upon the 
actual shape of the condensate-vapor interface do not actually 
do so, since they invariably use 

1 
- - =  6"/(1 "Jr- 6 ' 2 )  3 /2  (A7) 
Ri 

for the curvature of the interface. This follows from the exact 
relation (Equation A6) if only the first terms in both the 
numerator and the denominator are retained. However, even 
for small 6, there is hardly any justification for dropping all 
other terms in Equation A6. The difference between the actual 
d(1/Ri)/dx 1 and that obtained from Equation A7 gets further 
amplified due to differentiation. 


